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TIME-DEPENDENT STRUCTURE OF ONE-DIMENSIONAL MAGNETIC 

COMPRESSION WAVES I N  COLLISIONLESS PLASMAS - 

OBLIQUE AMBIENT MAGNETIC FIELD 

By Vernon J. Rossow 

Ames Research Center 

SUMMARY 

Numerical ana lys i s  i s  made of the s t ruc ture  of one-dimensional unsteady 
magnetic compression waves propagating i n t o  c o l l i s i o n l e s s  plasmas when the  
ambient magnetic f i e l d  i s  oblique t o  the wave d i rec t ion .  
both the  s u b c r i t i c a l  and s u p e r c r i t i c a l  solut ions changed continuously f rom one 
l imi t ing  s i t u a t i o n  t o  the  other .  
the  s u b c r i t i c a l  cases so t h a t  the two-parameter family of solut ions i n  mass 
r a t i o  and f i e l d  angle were reduced t o  a single set .  

I n  the  cases studied, 

A s imi l a r i t y  r u l e  was found f o r  co r re l a t ing  

INTRODUCTION 

Recent s tud ies  of  compression waves propagating through co l l i s ion le s s ,  
completely ionized gases ind ica te  that a large va r i e ty  of wave shapes i s  
possible .  
hopefully, a compilation of the  many possible s i t ua t ions  w i l l  help the  experi-  
menter i d e n t i f y  the  o r i g i n  of probe da ta  obtained i n  space or i n  the  labora- 
t o ry .  With such considerations a s  motivation, t he  present study was ca r r i ed  
out  t o  f i n d  the  s t ruc tu re  of one-dimensional unsteady magnetic compression 
waves moving in to  a two-component, completely ionized plasma t h a t  i s ,  i n  turn,  
erribedded i n  a magnetic f i e l d .  
magnetic f i e l d  that i s  driven by an e l e c t r i c  f i e l d  ( the  l e f t  boundary i n  
f i g .  1). 
nents Bxo and Bzo, with t an  8 = Bzo/Bxo. It i s  assumed t h a t  the  flow f i e l d  
can be ro t a t ed  about t he  x axis t o  eliminate any y component of t he  ambi- 
en t  magnetic f i e l d .  
t he  magnetic p i s ton  t o  be composed of only B, 
t i o n  on the  possible  o r i en ta t ions  between ambient and disturbance f i e l d s .  
general ,  t h e  compressed layer  w i l l  involve a l l  th ree  components of t he  mag- 
n e t i c  f i e l d  and of t he  ve loc i ty  vector. Of p a r t i c u l a r  i n t e r e s t  here i s  the  
va r i a t ion  i n  the  s t ruc tu re  of the compressed layer  as  the  angle 8 between 
the  d i r ec t ion  of wave propagation and t h e  ambient magnetic f i e l d  i s  changed 
from the  a l ined  (8 = Oo) t o  t he  t ransverse ( 6  = go0) s i tua t ion .  

Such analyses b r ing  about an understanding of  these waves, and 

/ 
The i n i t i a l l y  co ld  plasma i s  compressed by a 

The magnetic f i e l d  i n  the  undisturbed plasma has two constant compo- 

The disturbance f i e l d ,  Ey, a t  the  i n i t i a t i o n  plane causes 
and thereby imposes a r e s t r i c -  

I n  

The s t ruc tu re  of a s ingle  o r  s o l i t a r y  wave has been t r e a t e d  by Adlam and 
Allen ( r e f .  1) f o r  a wave t rave l ing  perpendicularly t o  the  ambient magnetic 
f i e l d  and by Saffman ( r e f .  2) and Pataraya ( r e f .  3) f o r  a wave moving along 
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t he  f i e l d  l i n e s .  The r e s u l t s  f o r  the two l imi t ing  cases were generalized by 
Saffman ( r e f .  4) and Kellogg ( r e f .  5) t o  the cases where the propagation direc- 
t i o n  i s  a t  an a r b i t r a r y  angle t o  the  ambient magnetic f i e l d .  Rather than j u s t  
a s ingle  pulse, the  general  case cons is t s  of a group of pulses t h a t  may or may - 
not be s tab le  (refs.  4 and 5 ) .  
t i m e  of a one-dimensional compressed layer  brought about by a magnetic p i s ton  
moving a t  any angle r e l a t i v e  t o  t h e  undisturbed magnetic f i e l d  d i rec t ion .  He - 
found by an approximate treatment t h a t  the s t ruc ture  of the wave changes 
r a the r  abruptly near t he  t ransverse l i m i t  when the  mass r a t i o  R = m i / +  i s  
la rge .  For stronger waves, h i s  more exact r e s u l t s  obtained by numerical i n t e -  
gra t ion  of the equations indicate  t h a t  t he  change w a s  not so abrupt as f i r s t  
thought; consequently, r e s u l t s  near 

Morton ( r e f .  6) studied the  development with 

8 = 90' resemble those a t  90°. 

The present invest igat ion f i r s t  supplements the  work of Morton ( ref .  6 )  
by redoing the so-called s u b c r i t i c a l  waves' by the method of Auer, Hurwitz, 
and Kilb ( r e f s .  7 and 8 ) .  Morton's r e s u l t s  a r e  then extended by new r e s u l t s ,  
found by the present technique, f o r  the  s u p e r c r i t i c a l  case i n  which breaking 
occurs and wherein volume elements of plasma interchange pos i t ions  during the  
event on a scale  comparable with the  s i z e  of the  compressed l aye r .  Both the  
present  analysis  and t h a t  of Morton s ta r t  with the  same bas i c  equations but  
d i f f e r  i n  the manner of so lu t ion .  Whereas Morton used a continuum formulation 
with an a r t i f i c i a l  v i scos i ty  i n  the  numerical work, here Lagrangian coordi-  
nates  are used t o  follow t h e  plasma elements i n  order t o  in t eg ra t e  the  time- 
dependent f l o w  f i e l d .  Such a d i sc re t e  model permits the ca lcu la t ion  t o  
proceed through breaking of t he  waves and interchanging of p a r t i c l e s  without 
requiring more assumptions as t o  the  nature of t h e  process.  

DEVELOPMENT OF EQUATIONS FOR NUMERICAL ANALYSIS 

Introducing the  longi tudinal  (Bxo) i n  addi t ion t o  the  t ransverse  
component (Bzo) of the magnetic f i e l d  causes the th ree  ve loc i ty  components t o  
be coupled t o  each other  through the  electromagnetic f i e l d s .  A s  a r e s u l t ,  the  
procedure used here d i f f e r s  from t h a t  of Auer, Hurwitz, and Kilb ( r e f s .  7 
and 8) only i n  t h a t  more components of the  various quan t i t i e s  must be ca r r i ed  
along i n  the analysis .  A b r i e f  descr ip t ion  of the  equations leading t o  the  
numerical work w i l l  be given i n  t h i s  sec t ion  and emphasis w i l l  be given t o  the  
new material .  

I n  vector notation, t he  equations f o r  conservation of mass and momentum 
of the  ions (subscr ipt  i) and of t h e  e lec t rons  ( subscr ip t  e )  for t h e  planar  
flow f i e l d  under consideration are  

'Convention has defined s u b c r i t i c a l  compression waves as those i n  which 
the  plasma elements r e t a i n  t h e i r  o r i g i n a l  order .  By cont ras t ,  s u p e r c r i t i c a l  
waves are those wherein t h e  wave i n t e n s i t y  i s  so l a rge  t h a t  plasma elements 
exchange posi t ions on a la rge  sca le  so t h a t  t he  s t ruc tu re  of the compressed 
layer  i s  i r r egu la r .  When 
waves occurs a t  an Alfvkn Mach number of 2.0; 

8 = go0, t h e  d iv is ion  between t h e  two types of 

Alfvgn Mach number = MA = Uwave/{B0/[pn,(m, + m i ) ]  1/21 



= o  a n i  e u i  le 
f 

a n i  ,e 
a t  ax 

s ince a l l  t h e  der iva t ives  with respect  t o  y and z are zero  and the  ions a re  
s ing ly  ionized. The quan t i t i e s  ni ,e ,  m i , e  a r e  t h e  number dens i tx  and mass 
of the  ions and electrons,  respect ively,  and  t h e  ve loc i ty  i s  
Similar ly ,  the electromagnetic f i e l d  equations f o r  t he  one-dimensional wave 
system are  

= i u  + 3v + $w. 

- 0  aBX ax- ( 3 )  

aE v x g =  - -  a t  

~ 

i 
where the  displacement current  has been assumed t o  be negl igible .  Since the  
plasma frequency i s  many orders  of magnitude g rea t e r  than any of the cyclotron 
frequencies,  the  number densi ty  of ions and e lec t rons  a re  taken t o  be equal as 

I a f i r s t  approximation ( r e f .  9 ) .  Therefore, 

A s  i n  previous analyses (refs. 7 and 8) ,  the e lec t rons  a re  assumed t o  r e t a i n  
t h e i r  o r i g i n a l  order while the ions are  permitted t o  take any order t h a t  t h e i r  
dynamics might d i c t a t e .  J u s t i f i c a t i o n  f o r  t h i s  approximation i s  given i n  
reference 9. 

A s  an a i d  i n  the numerical work, the  magnetic vector po ten t i a l ,  4, and 
t h e  e l e c t r i c  po ten t ia l ,  cp, a re  introduced such t h a t  

For t he  one-dimensional unsteady problem being t r e a t e d  here,  

2 2 .  ax J 

E, = - 

3 



These equations can be integrated t o  y i e ld  

where the constants a re  determined by conditions a t  the  r e f l e c t i o n  
or r i g h t  s ide  of the  flow f i e l d .  The quant i ty  yBxo i s  added t o  complete the  
def in i t ion  o f  the magnetic vector p o t e n t i a l  and does not en te r  the  analysis  
because t h e  y coordinate can be ignored. 

Cy and C, 

Before t h e  d i f f e r e n t i a l  equations can be f u r t h e r  adapted t o  t h e i r  
difference form f o r  the  numerical ca lcu la t ions ,  the i n i t i a l  conditions ( i . e . ,  
a t  t = 0) and the  r e s t r i c t i o n s  a t  the  boundaries x = 0 and x = Xm need t o  
be specif ied.  
Morton (ref.  6 ) ,  the p a r t i c l e s  are taken t o  be cold and therefore  s t a t iona ry  
a t  t = 0 with uniform d i s t r ibu t ion  throughout the  flow f i e l d .  The magnetic 
f i e l d  i n  the  undisturbed plasma has the  two constant components Bxo and Bzo 
(see f i g .  1). 
assumed t o  be brought about by an e l e c t r i c  f i e l d  i n  t h e  y d i rec t ion  

A s  assumed by Auer, Hurwitz, and K i l b  ( r e f s .  7 and 8) and by 

A t  the  i n i t i a t i o n  plane, the  disturbance t o  the  plasma i s  

E y ( O , t )  = E y o ( l  - eat) ; E Z ( O , t )  = 0 (10) 

t h a t  generates a magnetic f i e l d  i n  the  z d i rec t ion .  (The t ime-r ise  f a c t o r  
a 
forces  the plasma away from the  l e f t  boundary with a piston-type ac t ion  so 
t h a t  a wave f i e l d  and compressed layer  are produced. It i s  assumed t h a t  the 
r e f l ec t ion  plane a t  i s  impermeable t o  both  the  magnetic f i e l d  and the  
plasma so t h a t  a l l  disturbances are r e f l ec t ed  without loss. The magnetic vec- 
t o r  po ten t ia l s  there  are taken as 
Cy = -xGz0 and C z  = XmByo = 0 i n  equations ( 9 ) .  

w a s  always taken t o  be 0.12 i n  the  ca lcu la t ion . )  This magnetic f i e l d  

x = xm 

Ay(xm,t) = Az(xm,t) = 0 so t h a t  

With these quan t i t i e s  as s t a r t i n g  conditions,  t he  y and z momentum 
equations for the  ions and e lec t rons  can be in tegra ted  along the p a r t i c l e  
paths  t o  y i e l d  

e A, eAE - eBx0 
+ -  Y e  w e - - = - - -  me me me 

4 



where the  ve loc i t i e s  a re  zero a t  t = 0 and the superscr ip ts  on A designate 
the  value of t he  magnetic vector p o t e n t i a l  a t  t he  loca t ion  of t h e  p a r t i c l e  a t  
t = 0. 

Capi ta l  l e t t e r s  a re  now used t o  designate the  var iab les  i n  dimensionless 
form where the  reference length,  time, velocity,  e t c .  , a re  given by 

B* = BoU*/U~ 

A* = m* 
with Bo = (BZ0 + BE0)1'2, UA = Bo/[pk(mi + Q ) ] ~ ' ~ ,  UD = Eyo/Bo, and 

Wch = eBo/(miQ) 
BY = By/B*, AY = %/A*, X = x/A, T = t/t*, e t c . ,  and the  mass r a t i o  i s  defined 
as  R = m i / % .  It i s  a l so  convenient t o  introduce the  Lagrangian var iable ,  5 ,  
so t h a t  

The dimensionless var iables  then become U = u/U*, 

A s  w a s  done previously, the flow f i e l d  i s  divided in to  s labs  of  plasma, 
t he  thicknesses  of which are then made vanishingly small. Each s lab or sheet 
contains  the  same number of ions and e lec t rons  and i s  located a t  the  mass 
center  of t he  element it represents .  
used t o  set  up an a r ray  o f  equations t o  f i nd  the  motion of the  s labs  of plasma 
and the  associated electromagnetic f i e l d s .  Recursion r e l a t i o n s  used i n  the  
machine program t o  f i n d  the  magnetic f i e l d  components throughout the  flow 
f i e l d  a re  then found f o r  the  k th  s lab as (compare, e .g . ,  with r e f .  10) 

The procedure used i n  reference 8 i s  

where D = XJN and 

5 



since BY0 = 0. 
f i rs t  calculat ing the quan t i t i e s  

This matrix i s  inverted f o r  t he  magnetic f i e l d  values by 

s t a r t i n g  a t  t he  r e f l ec t ion  plane where 
t i o n  plane magnetic p i s ton  region where k = l. Since the boundary a t  Xm i s  
a per fec t  r e f l ec to r ,  the  beginning values f o r  k = N are 

k = N and proceeding t o  the  i n i t i a -  

Once these quan t i t i e s  are known, t he  recursion equations 

BYk = RYk(BYkml) + SYk 

B% = RZk(BZk-1) + szk  

( 1 5 4  

(13) 

y ie ld  the l o c a l  magnetic f i e l d  a f t e r  t he  value a t  the i n i t i a t i o n  plane (and i n  
the  pis ton region) i s  determined by 

I- Do [ ~ - l  - N(R + 1) + "'+I - + B$ [R(ZE1) + ZI1] SZ1 t D -AYw + 2 BZO { R + 1  
BZ, = 

1 - RZ1 + D(X1) 

where AYw = AY(0,T) = -[T + (e"T - l)/a] - %(B~~), since EYO = 1. 
accelerat ion of the slabs of plasma i s  found by ca lcu la t ing  the magnetic 
pressure difference on i t s  two sides; t h a t  i s ,  

The 

The accuracy of the  numerical ca l cu la t ions  can be monitored t o  a c e r t a i n  
extent  by checking t o  see whether t he  momentum and energy content of the  
e n t i r e  flow f i e l d  i s  conserved. The three components of t he  momentum a re  

6 



evaluated by means of  

An energy check during t h e  ca lcu la t ions  i s  made by evaluating and comparing 
the two s ides  of the  expression 

A machine program f o r  solving the  foregoing system of equations was used 
t o  f i n d  a number of solut ions.  Results f r o m  the computer were wr i t ten  on 
magnetic tape and then p lo t t ed  e l e c t r i c a l l y .  Accuracy t e s t s  were car r ied  out  
on various cases t o  determine which mesh s izes  were most su i t ab le .  

I FtZSULTS OF NUMERICAL ANALYSIS 

Emphasis i s  f i r s t  placed on the  var ia t ion  i n  the  s t ruc tu re  of t he  
compressed layer  as  the  angle 8 between t h e  wave d i rec t ion  and the  ambient 
magnetic f i e l d  changes from a l ined  (Oo) t o  normal (90") incidence. The e f f e c t  
of m a s s  r a t i o  on the so lu t ion  i s  then considered f o r  two s i tua t ions :  f irst ,  
t h e  ambient magnetic f i e l d  i s  chosen t o  be 1.0 so t h a t  t he  compression wave i s  
s u b c r i t i c a l  and the  plasma sheets  r e t a i n  t h e i r  o r i g i n a l  order,  t h a t  i s ,  
Bo = (BXO' + BZ02)l/' = 1 . 0 ( M ~ =  1 .5 ) ;  second, the  s t ruc tu re  i s  considered f o r  
Bo = 0.2(MA For a wave of t h i s  strength,  t he  plasma s labs  interchange 
order on a la rge  scale  and a random irregular- type f l o w  f i e l d  r e s u l t s .  
o the r  f a c t o r s  i n  t h e  ca lcu la t ions  a re  held f ixed  as  8 var ies  from 0' t o  90'. 

5.8). 
A l l  

I 
Subcr i t i ca l  Case 

Data on the  s t ruc tu re  of a nuniber of t he  s u b c r i t i c a l  cases a re  presented 
i n  figures 2 through 10. 
t h e  s t r u c t u r e  changes as the  magnetic f i e l d  angle, 8, or mass r a t i o ,  R, i s  
var ied.  The growth of the  compressed layer  with time i s  shown i n  f igu res  4 
through 10 f o r  se lec ted  cases so  t h a t  the reader can see how the  flow fie I d  

O f  p a r t i c u l a r  i n t e r e s t  here i s  t h e  manner i n  which 
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shown i n  f i gu res  2 and 3 developed. 
dis tance a t  a given t i m e  a r e  presented i n  p a r t  ( a )  of each f igu re  along with 
the  magnetic f i e l d  components. 
t he  f igure  t i t l e s .  % 

Variation of the ve loc i ty  components with 

Special  fea tures  of each solut ion a re  noted i n  

Figure 2 presents  t h e  s t ruc ture  of the compressed layer  f o r  MA" 1 . 5  a t  
severa l  angles when the  time T i s  60, t h a t  i s ,  60 time u n i t s  a f t e r  t he  d i s -  4 
turbance w a s  i n i t i a t e d .  A t  t he  mass r a t i o  chosen, the  flow f i e l d  changes 
gradually f r o m  one type t o  another - the  changeover appears t o  occur a t  about 
60°. 
curves f o r  the  magnetic f i e l d  i n t e n s i t i e s  a re  i n  general  agreement with the  
solutions of Kellogg ( r e f .  5) and Morton ( ref .  6) and no s t r i k i n g  d i s p a r i t i e s  
a re  noted. 

Although the  ca lcu la t ions  were not made s p e c i f i c a l l y  f o r  comparison, the 

Several changes i n  the  flow f i e l d  a re  observed as the  angle of the 
anibient f i e l d  var ies .  Because of the presence of a precursor-type wave, the  
compressed layer  or disturbed region i s  th i ckes t  a t  0 = Oo ( see  a l so  
f i g s .  5-9) .  Also apparent i n  f igu re  2 i s  the  extent  that the  magnetic fie1.d 
associated with the  disturbance d i f fuses  i n t o  the  compressed layer  a t  
causing the pis ton region t o  be smaller there .  I n  cont ras t ,  t h i s  mixing a t  
t he  piston-compressed layer  in te r face  i s  only severa l  u n i t s  of A 

0 = Oo 

a t  90'. 

Although most of t he  s t ruc tures  shown i n  figures 4 through 10 appear t o  
have establ ished a pa t te rn ,  theymay not have been f u l l y  developed when the  
calculat ions were terminated. 
i n  t he  size of the flow f i e l d  and, hence, i n  the  running time. Had the  p re s -  
en t  cases been car r ied  fu r the r ,  excessive in te r fe rence  from the  r e f l e c t i o n  
plane would have r e su l t ed . )  The r a the r  abrupt appearance of t he  small wave 
sequence i n  the  
prolonged t e s t s  might have brought a new wave system t o  l i g h t  i n  some of t he  
other  solut ions.  This does not seem l i k e l y  though because the s t ruc tu re  of 
the  compressed layers  appears t o  have s e t t l e d  down t o  a pa t t e rn .  

(Machine s torage capaci ty  prevented an increase 

8 = 60° case ( see  f i g .  8 ( b ) ) ,  a t  about T = 35, suggests t h a t  

S imi l a r i t y  Parameter f o r  S u b c r i t i c a l  Flow Fie lds  

Whereas the s u b c r i t i c a l  cases f o r  8 = 90° a re  independent of the  mass 
r a t i o  R, a l l  o ther  angles a re  a f fec ted  by it. 
mated t h a t  t he  f l o w  f i e l d  changes rap id ly  with angle near 90' when the  mass 
r a t i o  i s  large.  I n  order t o  study the  e f f e c t  of R on the  s t ruc tu re  of the  
compressed layer ,  a sequence of runs w a s  made f o r  
T = 60 a re  presented i n  f igu re  3. Although nothing new appeared the  s t ruc tu re  
changed considerably. O f  most inrportance, however, i s  the  resemblance between 
the three  new solut ions and the  r e s u l t s  f o r  0 = go0, 7 5 O ,  and 45' i n  f igure  2 
( the  60° cases f o r  R = 25 are dup l i ca t e s ) .  These r e s u l t s  l ed  the  author t o  
f ind  an empirical  ru le  f o r  r e l a t i n g  one case t o  another and then t o  the  j u s t i -  
f i c a t i o n  of the  r e s u l t s  by means of t he  equations.  
f igures  2 and 3 was obtained with the  rule 

Both Morton and Kellogg e s t i -  

8 = 60° and the r e s u l t s  a t  

A b e s t  f i t  t o  the da ta  i n  

BZOI = BZOII 
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- 1) B X O ~ ~ ( R ~ ~ / ~  - 1) = 
11 2 

where I and I1 are the  two cases being r e l a t ed  by the rule. However, an 
examination of the  recursion equations and, i n  p a r t i c u l a r ,  the quan t i t i e s  HY . and HZ (eqs.  (13)) l e d  t o  the  s i m i l a r i t y  parameter t h a t  i s  f e l t  t o  be the  
cor rec t  one. 

I The two forms a re  equal a t  R = 1 and become equivalent a t  l a rge  mass r a t i o s  
s ince 

plasma s labs  do not interchange order.  Equation (20b) i s  j u s t i f i e d  by consid- 
e r ing  the  l a t e r a l  displacements of the p a r t i c l e s  i n  the  two cases as  they 
appear i n  equations (13).  Since the mass of t he  e lec t ron  i s  the  same f o r  both 
cases,  t h e  r e l a t i v e  l a t e r a l  displacement i s  reduced by an increase i n  BXO, so 
t h a t ,  f o r  example, 

R112 - 1 = ( R  - l)/(R1’2 + 1) M (R - 1)/R1I2. Equation (20a) a r i s e s  
I f rom the  f a c t  t h a t  t he  solut ions a t  90’ are independent of R as long as t h e  

Ze fil -constant/BXO 

La te ra l  movement q f  the ion i s  approximated by 

Zi +(R constant)  ( 1 / R )  = constant/BXO 

I The f i r s t  term describes the  e f f e c t  on t h e  Larmor radius  brought about by the  
longi tudina l  magnetic f i e l d  and mass of the  ion and t h e  second term t r e a t s  t he  
reduced acce lera t ion  (and, hence, lower ve loc i ty  and dis tance)  f o r  a heavier 
ion.  Hence, t he  ion and e lec t ron  have the  same propor t iona l i ty  f a c t o r  bu t  
have opposite s igns.  When these r e s u l t s  are in se r t ed  in to  the  l a s t  term of  
equations (13) , which involves BXO/R112, the s i m i l a r i t y  r u l e  presented i n  
equations (20) i s  derived. 

A s  a t e s t  of t he  s i m i l a r i t y  r u l e  ( 2 0 ) ,  two sets of r e l a t ed  cases were 
ca lcu la ted  and the  r e s u l t s  a re  compared i n  f igu re  4 a t  three  time in t e rva l s .  
Exact correspondence i s  not achieved, bu t  the general  fea tures  of the  magnetic 
f i e l d  l i n e s  are reproduced qui te  wel l  considering the  large difference i n  mass 
r a t i o  between t h e  cases compared. A s  i s  t o  be expected, the other  f low-field 
parameters deviate  more from each o ther .  A hor izonta l  l i n e  f o r  the p i s ton  
region on BZ w a s  omitted t o  i l l u s t r a t e  the difference i n  the  motion of the  
in t e r f ace .  It appears t h a t  t he  average veloci ty  i s  about the same f o r  the  
cases compared bu t  t h e  heavier ions o s c i l l a t e  a t  a lower frequency and grea te r  
amplitude than the  l i g h t e r  ions.  
l i g h t e r  ion are not duplicated ( f i g .  5(b))  by the  heavier ion.  
t h e  magnetic f i e l d  of case I11 (R = 1836) appears t o  be a mean of case I V  
(R = 25) .  
give s a t i s f a c t o r y  similar solut ions.  

The high frequency o s c i l l a t i o n s  of the  
A s  a r e s u l t ,  

From these r e s u l t s ,  the  s imi l a r i t y  rule, equations ( 2 0 ) ,  appears t o  

9 



Superc r i t i ca l  Flow Fie lds  

The va r i a t ion  of t h e  magnetic f i e l d  components i n  the  compressed layer  
f o r  a disturbance of s u p e r c r i t i c a l  s t rength  i s  f i rs t  i l l u s t r a t e d  i n  f igu re  11 
f o r  several  values of 8 from 0' t o  90'. Once again, the  s t ruc tu re  does not 
change abrupt ly  from one form t o  the other .  Transi t ion from t h e  0' pa t t e rn  t o  
the  type t y p i c a l  of the  t ransverse s i t u a t i o n  occurs a t  about 30'. The forma- 
t i o n  of a region of near ly  uniform magnetic f i e l d  near the  p i s ton  a l so  appears 
t o  be cha rac t e r i s t i c  of the  solut ions near 0'. A s  8 increases  from about 
30°, the extent  of t h i s  area decreases quickly t o  zero. Since BZ)piston and 
the  length of the  p i s ton  region a re  e s s e n t i a l l y  independent of 8, the  uniform 
compressed layer  near t he  p is ton  f o r  
caused by diffusion of the  disturbance magnetic f i e l d  in to  the compressed 
l w e r .  
i n  which case, the  forward p a r t  of t he  layer  could be considered as  t he  shock 
s t ruc ture  ( i n  a gasdynamic continuum sense) .  
ca r r i ed  fu r the r  t o  see i f  t h i s  were t r u e .  Whether t he  depth o f  t he  compressed 
layer  i s  a function of 8 cannot be judged from f igu re  11 because of the  
unsteady nature of the s u p e r c r i t i c a l  cases.  
f o r  the 
pressed layer  by the  s ta r t -up  of  the  p i s ton  f i e l d .  Forward spraying of t he  
p a r t i c l e s  occurs i n  most of t he  s t rong or s u p e r c r i t i c a l  solut ions but  such 
plasma motion i s  not always as apparent i n  the  magnetic f i e l d  p r o f i l e s  as  
exhibited f o r  8 = 1.5' i n  f igure  11. Although the z component of the mag- 
n e t i c  f i e l d  exhib i t s  a random p r o f i l e  of about the same magnitude a t  all 
angles, the  i n t e n s i t y  of t he  component decreases regular ly  from 0' t o  90'. 
For angles of 45' and above, the  magnitude of BY r e l a t i v e  t o  BZ appears t o  
be the  most obvious ind ica t ion  of the  obliqueness of the  ambient f i e l d .  

. 

. 

8 = Oo and 15' does not appear t o  be 

It may be the  beginning of the  formation of a uniform compressed layer,  

The ca lcu la t ions  could not be 

Disturbances a t  X = 140 t o  160 
8 = 15' solut ion r e s u l t  from p a r t i c l e s  thrown f a r  ahead of the  com- 

y 

The influence of t he  mass r a t i o  on the  wave s t ruc tu re  i s  shown i n  
f igu re  I2 f o r  
solut ions.  Note t h a t  the magnetic p r o f i l e s  do not change with R i n  qui te  so 
pronounced a fashion as  d i d  the  s u b c r i t i c a l  cases i n  f igu re  3. A s l i g h t  
increase i n  the s ize  of the  dis turbed region f o r  R = 100 i s  a t t r i b u t e d  t o  the  
unsteady character  of the flow f i e l d  and not t o  an increased average growth 
r a t e .  These solut ions have the  same i r r e g u l a r  shape as those i n  f igu re  11, 
but  they do not resemble any of them c lose ly  enough t o  form a co r re l a t ion .  
pa r t i cu la r ,  t he  time and dis tance d i l a t i o n  formula derived empir ical ly  by 
Auer, Hurwitz, and K i l b  ( r e f .  8) f o r  the 90° s u p e r c r i t i c a l  waves does not 
apply fo r  any o ther  angle because the  depth of t he  compressed l aye r  does not 
change with R. Attempts were made t o  a r r i v e  a t  some s o r t  of s i m i l a r i t y  r u l e  
f o r  these r e s u l t s ,  bu t  no s a t i s f a c t o r y  parameter was found. 

8 = 60'. This angle was chosen t o  p a r a l l e l  the  s u b c r i t i c a l  

I n  

A s  was done f o r  t he  s u b c r i t i c a l  cases,  t he  development with time i s  
shown fo r  severa l  cases i n  f igures  13 through 1.7. Specia l  f ea tu re s  of the  
solut ions a re  again noted i n  t h e  f i g u r e  t i t l e s .  

10 



CONCLUDING REMARKS 

Calculations of the  flow f i e l d  generated i n  a c o l l i s i o n l e s s  plasma by a 
disturbance of the  magnetic p i s ton  type yielded r e s u l t s  t h a t  agree i n  general  
with previous work on oblique magnetic compression waves. The s t ruc ture  
changed continuously w i t h  angle from one l imi t ing  form t o  the  o ther ,  t h a t  is ,  
from 0' t o  90'. Although t h e  solut ions a t  intermediate values of 0 a re  more 
complex i n  t h e i r  dependence on mass r a t i o  than t h e  r e s u l t s  a t  90°, a similar- 
i t y  r u l e  w a s  found f o r  s u b c r i t i c a l  wave speeds. This rule makes it possible  
t o  r e l a t e  magnetic f i e l d  r e s u l t s  a t  one mass r a t i o  and angle t o  a correspond- 
ing one, thereby reducing a two-parameter family t o  a s ingle  s e t .  A compara- 
b l e  r u l e  w a s  not found f o r  the  s u p e r c r i t i c a l  f low f i e l d s .  The need f o r  such 
a r u l e  i s  not so g rea t  because the  solut ions do not depend s t rongly on mass 
r a t i o .  

* 

Limitations imposed by computer capacity did not permit t he  calculat ions 
t o  be ca r r i ed  out as far as desirable  i n  a l l  cases .  Although it does not seem 
l ike ly ,  some of the foregoing conclusions might have been d i f f e ren t  had the  
flow f i e l d  been allowed t o  develop f o r  a su f f i c i en t ly  longer period. Also,  it 
should 'be remembered t h a t  t h e  disturbance used t o  generate t h e  wave w a s  an 
e l e c t r i c  f i e l d  i n  the  y d i r ec t ion  a t  the  i n i t i a t i o n  plane. Such a f i e l d  
produces a magnetic p i s ton  composed of B, only. Another type of p i s ton  
might y i e l d  qu i t e  d i f f e r e n t  resu l t s .  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  94035, Feb. 2, 1967 
129 -02 -03 -03 -00 -21 ; 
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Figure 1. - Schematic diagram o f  flow f i e l d .  
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Figure 8 .  - Structure  of time-dependent flow f i e l d  f o r  s u b c r i t i c a l  wave; 
R = 25, 8 = 600, Bo = 1.0 (BXO = 0.500, BZO = 0.866). 
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Figure 1 5 . -  Structure  of time-dependent flow f i e l d  f o r  s u p e r c r i t i c a l  wave; 
R = 25, 8 = 600, Bo = 0.2 (BXO = 0.100, BZO = 0.1732). 
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Figure 16.-  Structure  of time-dependent flow f i e l d  f o r  s u p e r c r i t i c a l  wave; 
R = 1, e = 600, B, = 0.2 (BXO = 0.100, BZO = 0.1732). 
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Figure 17.- Structure  of time-dependent flow f i e l d  f o r  s u p e r c r i t i c a l  wave; 
R = 100, e = 600, B, = 0.2 (BXO = 0.100, BZO = 0.1732). 
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“The aeronautical and space activities of the United States shall be 
rondwted so ds to rontribee . . . to tbe expanJion of b u w  knowl- 
edge of phenomena in the atmosphere and space. The Administration 
Jhall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the re sah  tbereof.” 

-NATIONAL AERONAUnCs AND SPACE ACT OF 1958 
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